216,435 research outputs found

    Sensing with the Motor Cortex

    Get PDF
    The primary motor cortex is a critical node in the network of brain regions responsible for voluntary motor behavior. It has been less appreciated, however, that the motor cortex exhibits sensory responses in a variety of modalities including vision and somatosensation. We review current work that emphasizes the heterogeneity in sensorimotor responses in the motor cortex and focus on its implications for cortical control of movement as well as for brain-machine interface development

    The topology of connections between rat prefrontal, motor and sensory cortices

    Get PDF
    The connections of prefrontal cortex (PFC) were investigated in the rat brain to determine the order and location of input and output connections to motor and somatosensory cortex. Retrograde (100 nl Fluoro-Gold) and anterograde (100 nl Biotinylated Dextran Amines, BDA; Fluorescein and Texas Red) neuronanatomical tracers were injected into the subdivisions of the PFC (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital) and their projections studied. We found clear evidence for organized input projections from the motor and somatosensory cortices to the PFC, with distinct areas of motor and cingulate cortex projecting in an ordered arrangement to the subdivisions of PFC. As injection location of retrograde tracer was moved from medial to lateral in PFC, we observed an ordered arrangement of projections occurring in sensory-motor cortex. There was a significant effect of retrograde injection location on the position of labelled cells occurring in sensory-motor cortex (dorsoventral, anterior-posterior and mediolateral axes p < 0.001). The arrangement of output projections from PFC also displayed a significant ordered projection to sensory-motor cortex (dorsoventral p < 0.001, anterior-posterior p = 0.002 and mediolateral axes p < 0.001)

    Encoding of Intention and Spatial Location in the Posterior Parietal Cortex

    Get PDF
    The posterior parietal cortex is functionally situated between sensory cortex and motor cortex. The responses of cells in this area are difficult to classify as strictly sensory or motor, since many have both sensory- and movement-related activities, as well as activities related to higher cognitive functions such as attention and intention. In this review we will provide evidence that the posterior parietal cortex is an interface between sensory and motor structures and performs various functions important for sensory-motor integration. The review will focus on two specific sensory-motor tasks-the formation of motor plans and the abstract representation of space. Cells in the lateral intraparietal area, a subdivision of the parietal cortex, have activity related to eye movements the animal intends to make. This finding represents the lowest stage in the sensory-motor cortical pathway in which activity related to intention has been found and may represent the cortical stage in which sensory signals go "over the hump" to become intentions and plans to make movements. The second part of the review will discuss the representation of space in the posterior parietal cortex. Encoding spatial locations is an essential step in sensory-motor transformations. Since movements are made to locations in space, these locations should be coded invariant of eye and head position or the sensory modality signaling the target for a movement Data will be reviewed demonstrating that there exists in the posterior parietal cortex an abstract representation of space that is constructed from the integration of visual, auditory, vestibular, eye position, and propriocaptive head position signals. This representation is in the form of a population code and the above signals are not combined in a haphazard fashion. Rather, they are brought together using a specific operation to form "planar gain fields" that are the common foundation of the population code for the neural construct of space

    Connections of the Mesencephalic Locomotor Region (MLR) in the Cat

    Get PDF
    The cat entopeduncular nucleus (EN), which is the main output of the basal ganglia, is known to project to the mesencephalic tegmentum. We have been able to elicit antidromic responses in single EN neurons from the region of the mesencephalic locomotor region (MLR), then transect (precollicular-postmamillary) the brainstem and elicit rhythmic movements of the limbs by stimulation of the same site in the same animal. Injections of the fluorescent dye 2,4 diamidino phenylindole 2 HCL (DAPI) into this area induces retrograde labeling of cell bodies in EN and motor cortex. Injections of a tritiated amino acid (leucine) into the motor cortex induce terminal labeling in the area of the MLR. These studies describe convergent projections from EN and motor cortex to the MLR. These connections may be involved in the sequencing and ordering of voluntary movements in which locomotion is necessary

    Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy.

    Get PDF
    AIM: To determine whether diffusion tensor imaging (DTI) can be an independent assessment for identifying the corticospinal tract (CST) projecting from the more-affected motor cortex in children with unilateral spastic cerebral palsy (CP). METHOD: Twenty children with unilateral spastic CP participated in this study (16 males, four females; mean age 9y 2mo [standard deviation (SD) 3y 2mo], Manual Ability Classification System [MACS] level I-III). We used DTI tractography to reconstruct the CST projecting from the more-affected motor cortex. We mapped the motor representation of the more-affected hand by stimulating the more- and the less-affected motor cortex measured with single-pulse transcranial magnetic stimulation (TMS). We then verified the presence or absence of the contralateral CST by comparing the TMS map and DTI tractography. Fisher's exact test was used to determine the association between findings of TMS and DTI. RESULTS: DTI tractography successfully identified the CST controlling the more-affected hand (sensitivity=82%, specificity=78%). INTERPRETATION: Contralateral CST projecting from the lesioned motor cortex assessed by DTI is consistent with findings of TMS mapping. Since CST connectivity may be predictive of response to certain upper extremity treatments, DTI-identified CST connectivity may potentially be valuable for determining such connectivity where TMS is unavailable or inadvisable for children with seizures.K08 NS073796 - NINDS NIH HHS; TL1 RR024158 - NCRR NIH HHS; K01 NS062116 - NINDS NIH HHS; UL1 RR024156 - NCRR NIH HHS; KL2 RR024157 - NCRR NIH HHS; R01 HD076436 - NICHD NIH HHSPublished versio

    Damage to fronto-parietal networks impairs motor imagery ability after stroke : a voxel-based lesion symptom mapping study

    Get PDF
    Background: mental practice with motor imagery has been shown to promote motor skill acquisition in healthy subjects and patients. Although lesions of the common motor imagery and motor execution neural network are expected to impair motor imagery ability, functional equivalence appears to be at least partially preserved in stroke patients.Aim: to identify brain regions that are mandatory for preserved motor imagery ability after stroke.Method: thirty-seven patients with hemiplegia after a first time stroke participated. Motor imagery ability was measured using a Motor Imagery questionnaire and temporal congruence test. A voxelwise lesion symptom mapping approach was used to identify neural correlates of motor imagery in this cohort within the first year post-stroke.Results: poor motor imagery vividness was associated with lesions in the left putamen, left ventral premotor cortex and long association fibres linking parieto-occipital regions with the dorsolateral premotor and prefrontal areas. Poor temporal congruence was otherwise linked to lesions in the more rostrally located white matter of the superior corona radiata. Conclusion: This voxel-based lesion symptom mapping study confirms the association between white matter tract lesions and impaired motor imagery ability, thus emphasizing the importance of an intact fronto-parietal network for motor imagery. Our results further highlight the crucial role of the basal ganglia and premotor cortex when performing motor imagery tasks

    Temporal Evolution of Both Premotor and Motor Cortical Tuning Properties Reflect Changes in Limb Biomechanics

    Get PDF
    A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery and therefore its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortices exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought

    The cerebellum and motor dysfunction in neuropsychiatric disorders

    Get PDF
    The cerebellum is densely interconnected with sensory-motor areas of the cerebral cortex, and in man, the great expansion of the association areas of cerebral cortex is also paralleled by an expansion of the lateral cerebellar hemispheres. It is therefore likely that these circuits contribute to non-motor cognitive functions, but this is still a controversial issue. One approach is to examine evidence from neuropsychiatric disorders of cerebellar involvement. In this review, we narrow this search to test whether there is evidence of motor dysfunction associated with neuropsychiatric disorders consistent with disruption of cerebellar motor function. While we do find such evidence, especially in autism, schizophrenia and dyslexia, we caution that the restricted set of motor symptoms does not suggest global cerebellar dysfunction. Moreover, these symptoms may also reflect involvement of other, extra-cerebellar circuits and detailed examination of specific sub groups of individuals within each disorder may help to relate such motor symptoms to cerebellar morphology

    Human Posterior Parietal Cortex Plans Where to Reach and What to Avoid

    Get PDF
    In this time-resolved functional magnetic resonance imaging (fMRI) study, we aimed to trace the neuronal correlates of covert planning processes that precede visually guided motor behavior. Specifically, we asked whether human posterior parietal cortex has prospective planning activity that can be distinguished from activity related to retrospective visual memory and attention. Although various electrophysiological studies in monkeys have demonstrated such motor planning at the level of parietal neurons, comparatively little support is provided by recent human imaging experiments. Rather, a majority of experiments highlights a role of human posterior parietal cortex in visual working memory and attention. We thus sought to establish a clear separation of visual memory and attention from processes related to the planning of goal-directed motor behaviors. To this end, we compared delayed-response tasks with identical mnemonic and attentional demands but varying degrees of motor planning. Subjects memorized multiple target locations, and in a random subset of trials targets additionally instructed (1) desired goals or (2) undesired goals for upcoming finger reaches. Compared with the memory/attention-only conditions, both latter situations led to a specific increase of preparatory fMRI activity in posterior parietal and dorsal premotor cortex. Thus, posterior parietal cortex has prospective plans for upcoming behaviors while considering both types of targets relevant for action: those to be acquired and those to be avoided
    • …
    corecore